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ABSTRACT 

The thesis examines the current testing standards for diesel fuels and 

establishes the relevance of such testing standards to bio-derived diesel fuels. 

There is a need for more detailed kinetics information for bio-diesel fuels to allow 

exploration of issues in engine and fuel design. Flame studies can provide overall 

chemical kinetic information that is currently lacking in the literature for bio-diesel 

fuels. An experimental apparatus to measure laminar flame speeds was 

designed and implemented to convey overall chemical reaction rate information. 

This work addressed three major aspects of such design: combustion chamber, 

auxiliary systems (gases and fuel supply, ignition, and control) and measurement 

systems. Test rig characterization was attempted; however, critical ignition and 

fueling issues were uncovered during experimentation. Suggestions for future 

work provide solutions and improvement pathways to the current design.  
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I. INTRODUCTION  

A. MOTIVATION 

The current testing standards for liquid fuels and the relevance of such 

testing standards were evaluated and applied to bio-diesel fuels. To allow 

exploration of issues in engine and fuel design, there is, however, a need for 

more detailed kinetics information for bio-diesel fuel. To understand the impact of 

fundamental combustion properties, such as ignition characteristics, laminar 

flame speed, strain sensitivity and extinction strain rates on emission and stability 

characteristics of Diesel engines and their operation with bio-diesel fuels, 

extensive research is ongoing [1].  

Many simplified models are used to predict the static stability of the 

combustor heavily rely on laminar flame speed information. This is because it 

has a significant impact upon the propensity of a flame to flashback and blow off 

[2]. In addition, it serves as a key scaling parameter for other important 

combustion characteristics, such as the turbulent flame structure, turbulent flame 

speed and flame’s spatial distribution [3]. Therefore, the vision is that further 

flame studies will provide important kinetics validation data for bio-diesel-like 

fuels. This motivated the design for a vertical combustion chamber to measure 

flame speeds of the varying strains of bio-diesel fuels. This key parameter 

contains fundamental information regarding reactivity, diffusivity, and 

exothermicity of the fuel mixture [4].  

The flame experiments are challenging: the tested bio-fuel must be 

uniformly atomized and uniformly dispersed. The current test rig was developed 

with provisions for optical access and for future spectroscopic measurements. 
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B. THE PRINCIPLE OF LAMINAR FLAME SPEED 

Laminar flame speed contains fundamental information regarding 

reactivity, diffusivity, and exothermicity of the fuel mixture. It serves as a good 

validation parameter for leading kinetic models used for detailed combustion 

simulations [5]. The former also serves in the prediction of static stability of 

combustors. This is because it has significant impact upon the propensity of a 

flame to flashback and blow off [6].  

Laminar flame speed can be defined as the velocity that a planar flame 

front travels relative to the unburned gas in a direction normal to the flame 

surface [7]. From a simplified analysis of a flame, based on a balance between 

heat release and diffusion, the laminar flame speed, SL can be modelled as 

L
RR

S
a

r
»

´
 

where α is the thermal diffusivity, RR is the overall reaction rate, and ρ is the 

unburned gas density. To calculate the laminar flame speed, the thermo physical 

properties of the fuel mixture at high temperatures must be determined to have a 

more accurate reaction rate [8, 9]. This data, however, is not available for many 

fuels and even less so for bio-diesel fuels. Therefore, a direct experimental 

measurement is warranted. 

C. FACTORS AFFECTING LAMINAR FLAME SPEED  

There are four main factors that can directly or indirectly effect and 

influence laminar flame speed. They are: pressure, pre-heat temperature, 

hydrogen to carbon ratio (H to C ratio) of the fuel as well as the effect of dilution 

[10, 11].  
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1. Pressure 

An increase in pressure is expected to increase the overall reaction rate 

(RR) and, hence, increase the laminar flame speed according to the proposed 

model. On the other hand, the increased density of the reactant mixture with 

increase in pressure necessitates more thermal energy transfer from the reaction 

zone to raise the reactant temperature in the preheat zone. Since diffusivity is 

also inversely proportional to pressure, the overall increase in pressure increases 

flame speed.  

2. Pre-Heat Temperature 

The preheat temperature influences the laminar flame speed mainly 

through the changes in reaction rate and diffusive properties. An increase in 

preheat temperature also increases the adiabatic flame temperature. It is also 

known that the rate of increase is more for lean mixtures than for stoichiometric 

or rich mixtures. 

3. Hydrogen to Carbon Ratio 

Flame speed increases as the relative amount of H in the fuel increases. 

This behaviour can be explained by the fact that the overall reactivity of the fuel 

mixture increases with the amount of H as the low molecular weight of hydrogen 

acts to increase the diffusivity of the reactant mixture.  

4. Diluents 

The presence of diluents in the fuel, such as CO2, N2 and H2O, will reduce 

the flame temperature and, thus, reduce the laminar flame speed through a 

reduction in overall reaction rate. The diluents are not inert and can potentially 

impede flame propagation. The diluents present in the fuel can also influence 

flame propagation through radiative heat transfer. Most diluents are effective 

absorbers and emitters of infrared radiation and will result in absorption of energy 
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radiated from the hot products This enhancement of thermal energy transfer 

across the flame aids in flame propagation and, hence, increases the laminar 

flame speed.  

D. NATURE OF BIO-FUEL 

Bio-diesel is a promising alternative to petroleum-based diesel fuels. This 

is because it is a renewable energy source and provides an avenue for the DoD 

to become energy-independent from rogue nations’ oil supplies [12]. Its extensive 

use in unmodified engines has proved to be very successful. Agricultural fat and 

oils, in raw or chemically modified forms, have the potential to supplant a 

significant proportion of petroleum-based fuels [13]. Bio-diesel is of particular 

interest to the automobile industry, and other areas in energy and the 

environment, because it significantly reduces particulate matter (PM), 

hydrocarbon (HC) and carbon monoxide (CO) emissions and the net production 

of carbon dioxide (CO2) from combustion sources (note that no modifications to 

the engines are necessary [14]. Bio-diesel is also the only alternative fuel that 

has passed the Environmental Protection Agency (EPA)-required Tier I and Tier 

II Health Effects testing requirements of the Clean Air Act Amendments of 19901. 

In addition, bio-diesel is particularly attractive because it is a renewable fuel that 

can be replenished through the growth of plants or algae or production of 

livestock. It has the potential to supplant a fraction of petroleum-based fuels.  

Depending on the quality of the bio-extender, biofuels can have different 

characteristics from conventional refined fuels: they may potentially polymerize 

with heat. Therefore, testing of both bio-diesel-extender and finished blends is 

important [15]. Testing helps to protect engines and fuel pumps from potential 

 

 

 

  

                                            
1 Extracted from: www.biodiesel.org.au. Accessed 15 July 2009. 



 5

damage and deposits caused by poor stability, organic insoluble matter, water 

and contamination from metals or bi products from the trans-esterification 

process2.   

Bio-diesel and bio-ethanol are the two main bio-fuels. The two groups of 

bio-fuels are: first generation bio-fuels made from a food source; second 

generation bio-fuels involve crops not used primarily as a food source [16]. 

There are several problems with bio-fuels: they cost more than fossil fuels 

[17]. Many bio-fuels are first generation. This has effected food supply and 

caused food prices to increase. Our dependence on the crops for food also limits 

production growth. Bio-fuels are in small-scale production, but it is difficult 

making production large enough to supply enough fuel to replace fossil fuels3. 

E. CURRENT TESTING STANDARD FOR BIO-FUEL 

Oil companies and vehicle manufacturers are actively working with biofuel 

extender producers to obtain agreement on the standards for trans-esterified 

vegetable oils suitable for blending with conventional diesel. This is to ensure 

that the product meets the technical requirements of modern diesel engines [18]. 

The minimum test requirements for biodiesel blend extenders are specified in 

ASTM D67514 in USA and EN 142145 within Europe.  

To maintain standards, it is vital that all road fuels are subject to strict 

quality controls. In addition, it is important to provide authorities with the ability to 

                                            
2 Trans-esterification is defined as a chemical process involving the exchange of organic 

group R" of an ester with the organic group R' of an alcohol and often catalyzed by the addition of 
an acid or base.  

3 Extracted from: www.alternative-energy-news.info/biofuels-alternative-fossil-fuels. Accessed 
17 July 2009. 

4 ASTM D6751-08 details standards and specifications for bio-diesels blended with middle distillate 
fuels. This specification standard specifies various test methods to be used in the determination of certain 
properties for bio-diesel blends and kinematic viscosity. 

5 EN 14214 is an international standard that describes the minimum requirements for bio-diesel. The 
European Standard was approved by CEN (European Committee for Standardization). 
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assess safety risks and environmental pollution [19]. For example, regular 

mineral diesel is subject to the EN 590 standard. In 1997, the European 

Committee for Standardization was given the task to develop a uniform standard 

for Fatty Acid Methyl Ester (FAME). The result was the EN 14214 specification. 

The introduction of this standard in 2004 is valid for all member states of the 

European Union [20]. In particular, this standard gives engine and automobile 

makers the ability to give warranties to those vehicles that run on bio-diesel. At 

present a limit of 5% FAME is allowed in EN 5906 diesel. This 5% must conform 

to the EN14214 standard. Table 1 depicts the various testing standards for bio-

diesel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            
6 EN 590 describes the physical properties that all automotive diesel fuels must meet if they are to be 

sold in the European Union, Iceland, Norway and Switzerland. 
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Bio-diesel 
Standards 

Unit EN 14214 ASTM D 6751 EN 590 

Density 15°C  g/cm³ 0.86-0.90 - 0.82-0.845 
Viscosity 40°C  mm²/s 3.5-5.0 1.9-6.0 2.0-4.5 

Distillation % @ °C - 90%,360°C 
85%,350°C - 
95%,360°C 

Flashpoint (Fp) °C 101 min 93 min 55 min 
Sulphur mg/kg 10 max 15 max 350 max 
CCR 100%  %mass - 0.05 max - 
Carbon residue 
(10%dist.residue) 

%mass 0.3 max - 0.3 max 

Sulphated ash  %mass 0.02 max 0.02 max - 
Oxid ash  %mass - - 0.1 max 
Water mg/kg 500 max 500 max 200 max 
Total contamination  mg/kg 24 max - 24 max 
Cu corrosion max 3h/50°C 1 3 1 

Oxidation stability  hrs;110°C 6 hours min 3 hours min 
N/A (25 
g/m3) 

Cetane number   51 min 47 min 51 min 
Acid value  mgKOH /g 0.5 max 0.5 max - 

Methanol %mass 0.20 max 
0.2 max or Fp 
<130°C 

- 

Phosphorus mg/kg 4 max 10 max - 
Gp I metals (Na,K) mg/kg 5 max 5 max - 
GpII metals (Ca,Mg) mg/kg 5 max 5 max - 
Triglyceride %mass 0.2 max - - 
Free glycerol  %mass 0.02 max 0.02 max - 

Bio-diesel 
Standards 

Unit EN 14214 ASTM D 6751 EN 590 

Total glycerol  %mass 0.25 max 0.24 max - 
Ester content  %mass 96.5 min - - 

Table 1.   Testing Standards for Bio-Diesel (Extracted from Biofuel Systems Group: 
www.biofuelsystems.com/biodiesel/specification. Accessed 19 Aug 2009.) 
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The current established and widely used testing standards7 for bio-fuel are 

depicted as follows: 

1. Density (EN ISO 3675, EN ISO 12185)  

Bio-diesels generally have higher densities than mineral diesel (EN 590 

820-845 kg/m3 at 15°C). Density increases with a decrease in chain length and 

with unsaturation. This can have an impact on fuel consumption. This is because 

the fuel introduced into the combustion chamber is determined volumetrically. 

2. Viscosity (EN ISO 3104, ISO 3105, D445)  

Viscosities of neat vegetable oils are many times higher. This leads to 

serious problems in unmodified engines. The increase in viscosity results in poor 

atomization and incomplete combustion. The latter leads to coking of injector 

tips. This results in engine power loss. Bio-diesel still has higher viscosity than 

mineral diesel (3.50-5.00 mm2/s at 40°C vs. 2.00-4.50 mm2/s). Viscosity 

decreases with unsaturation, but increases markedly with contamination by 

mono, di or tri glycerides. 

3. Flash Point (ISO 3679, IP 523, IP 524, D93)  

Pure rapeseed methyl ester has a flash point value of up to 170°C. This 

method is, therefore, looks at residual components within the fuel that are 

combustible, especially methanol that is a particular hazard due to its invisible 

flame. 

4. Sulphur Content (EN ISO 20846, EN ISO 20884, D5453)  

Sulphur emissions are harmful to human health. In addition, high sulphur 

fuels cause greater engine wear and, in particular, shorten the life of the catalyst. 

Bio-diesel derived from pure rapeseed oil will contain virtually no sulphur. FAME 

derived from animal sources, however, may contain significant quantities. 

                                            
7 Extracted from source: www.biofuelstesting.com/quality_control.asp. Accessed 10 July 2009. 
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5. Carbon Residue (EN ISO 10370)  

The Carbon Residue is the material left after evaporation and pyrolysis of 

a sample fuel. This is a measure of the tendency of a fuel to produce deposits on 

injector tips and the combustion chamber. For FAME samples, it is an indication 

of the amount of glycerides, free fatty acids, soaps and catalyst residues 

remaining within the sample. 

6. Cetane Number (EN ISO 5165, D613)  

This serves as a measure of ignition quality. This is the most pronounced 

change from vegetable oil to the transesterified product. Due to incomplete 

combustion, fuels with low cetane numbers show an increase in emissions. Palm 

Oil and Tallow-derived bio-diesels have the best cetane numbers. 

7. Sulphated Ash (ISO 3987, D874)  

Ash describes the amount of inorganic contaminants, such as catalyst 

residues, remaining within the fuel. Ash relates to engine deposits on 

combustion. 

8. Water Content (EN ISO 12937)  

As FAME is hygroscopic, it can pick up water in storage. As such, there 

can be problems meeting the specification. At around 1500 ppm, the solubility 

limit is reached and the water bottoms out. Free water promotes biological 

growth and the reverse reaction turns bio-diesel into free fatty acids. 
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9. Total Contamination (EN 12662)  

The definition of total contamination is the insoluble material retained after 

the filtration of a heated sample over a standardized 0.8mm filter. FAME samples 

with high quantities of insoluble materials tend to cause fuel filter and injector 

blockages. High concentrations of soap stock are normally associated with high 

total contamination. 

10. Copper Strip Corrosion (EN ISO 2160, D130)  

This is defined as the likelihood to cause corrosion to copper, zinc and 

bronze parts of an engine. Heat a polished metallic strip at 50°C for 3 hours and, 

then, washed and compared to standards. Free acids or sulfur compounds likely 

cause corrosion. FAME, however, gives consistently good results in this area and 

is unlikely to fail due to low sulfur content. 

11. Oxidation Stability (EN 14112)  

The Oxidative stability specification is defined as a minimum Rancimat 

induction period of six hours. Essentially a fuel heats at 110°C in a constant air 

stream and the formation of volatile organic acids is detected. This property 

relates to the overall storage stability of the fuel. The higher the degree of 

unsaturation (double bonds) within the FAME molecules equates to a decrease 

in oxidative stability. The addition of antioxidant additives can improve this. 

12. Acid Value (EN 14104, D664)  

Acid value is a measure of mineral acids and free fatty acids contained in 

a fuel sample. It is expressed in mg KOH required to neutralize 1g of FAME. High 

fuel acidity is linked with corrosion and engine deposits. 
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13. Iodine Value (EN 14111)  

Iodine number is a measure of total unsaturation (double bonds) within the 

FAME product. It is expressed as the grams Iodine requires to react with 100g of 

FAME sample. High Iodine value relates to polymerization of fuels, which leads 

to injector fouling. It is also linked to poor storage stability. 

14. Ester Content (EN 14103)  

This is measured using gas chromatography and is restricted to esters 

falling within the C14-C24 range. It is ultimately a test for reaction conversion. As 

linolenic and polyunsaturated esters have been shown to display a 

disproportionately strong effect on oxidative stability, they are controlled. 

15. Methanol Content (EN 14110)  

Methanol can be removed from FAME by washing or distilling. Due to the 

very low flash point of methanol, high methanol contents pose safety risks. 

16. Glycerides (EN 14105, EN 14106, D6584)  

There is a limit on the mono, di, and triglycerides of no more than 0.80%, 

0.20% and 0.20% respectively. Total glycerol is the sum of the bound and free 

glycerol and must not exceed 0.25%/. Failing to meet the specification implies 

low conversion to ester and deposit formation on injectors and valves. 

17. Group I Metals  

Sodium and Potassium are limited to a combined 5ppm. These arise from 

the addition of catalyst and result in high ash levels in the engine. 
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18. Group II Metals  

Calcium and Magnesium are limited to a combined 5ppm. These may rise 

from the addition of hard water in the washing process. Calcium and Magnesium 

soaps have been related to injector pump sticking. 

19. Phosphorous Content (EN14107, D4951)  

The phosphorous limit is approx 10 ppm and normally rises from 

phospholipids within the starting material or from the addition of phosphoric acid 

in the production process. High phosphorus fuels are suspected of poisoning 

catalysts and increasing emissions. 

20. CFPP (EN 116)  

Cold-Filter Plugging Point is considered a suitable indicator of low 

temperature operability. It defines a temperature at which a fuel is no longer 

filterable within a specified time limit. 
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II. FLAME-SPEED EXPERIMENTATION  

A. TESTING METHODOLOGY  

The objective of this thesis is to design and build a laboratory-based flame 

speed test rig for the measurement of laminar flame speeds of fuel-air and bio-

fuel air mixtures at standard conditions. 

A premixed charge is prepared by adding the required amount of fuel to a 

controlled quantity of air. The desired amount of liquid fuel is delivered by means 

of a fuel injector whose flow rate varies linearly with fuel pressure. The flow rates 

of air are controlled using calibrated choked orifices. Thus, by setting the 

upstream pressures, the flow rates can be controlled. The liquid fuel is atomized 

into fine droplets using an ACDelco fuel injector originally designed for service in 

direct fuel injected engines. 

The injector operates with fuel pressures ranging from 50 to 2500 psi. The 

large pressures are used to atomize the fuel into droplets with Sauter mean 

diameters (D32) between 5 and 15 m. Residence time in the combustion 

chamber allows for vaporization of such droplets following a D2 law. 

The almost quiescent fuel-air mixtures are consequently ignited by a spark 

discharge inside a combustion chamber. A spherically expanding flame kernel 

should develop until the flame reaches the walls where a laminar flame should 

start to propagate into the unburned reactants. 

Optical measurements using the Thorlabs DET36A detectors installed 

along the combustor walls provide the time-of-arrival (TOA) measurements. From 

this we can determine the flame speed by dividing the distance between 

detectors by the difference in TOA. Data is recorded on a Tektronix DPO4104 

Oscilloscope. 
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B. EXPERIMENTAL TEST MATRIX 

Due to kerosene fuel availability, it will be used to characterize the test rig. 

The laminar flame speeds of these kerosene-air mixtures are experimentally 

measured. The flame speed data are obtained for a range of equivalence ratios 

from 0.8 to 1.4.  

C. EXPERIMENTAL SET-UP 

The experimental test rig comprises of four main modules: a) combustion 

chamber, b) exhaust system, c) control system and d) the supply system. The 

selection criteria for the material and component, as well as the embedded 

design considerations for the respective modules, are elaborated in this section. 

1. The Combustion Chamber 

The combustion chamber (Figure 1) consists of three stainless steel pipes 

attached and pressure-sealed. Due to its chemical inertness and structural 

rigidity, stainless steel is selected for the fabrication of the combustion chamber. 

It was installed in a vertical orientation. To attain pressure-sealed conditions for 

the chamber, gaskets are placed between the interfaces of the flanges. Along 

each side of the pipe are national pipe thread (NPT) threaded holes meant for 

attaching optical sensors and other measuring instruments (refer to Figure 2). 

Standard NPT connectors and Swagelok fittings and stainless steel tubing are 

used for the auxiliary systems to the combustion chamber.  
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Figure 1.   The Combustion Chamber 
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Figure 2.   Combustion Chamber with NPT Threaded Holes for 
Instrumentation 

a. Fuel Injector 

The top flange of the combustion chamber (depicted in Figure 3) 

has inlet ports for nitrogen, pressurized air, and outlets to the exhaust system. To 

have better fuel-air mixing as air flows into the combustion chamber, the inlet 

ports are chamfered on the inward side. The piping inlets surround a housing 

attachment for a fuel injector located at the center of the top flange. The fuel 

Injector (ACDelco ACD217-3086) is depicted in Figure 4. The housing 

attachment connects directly to a fuel piping, where it will collect the fuel and 

nozzle-spray into the combustion chamber for mixing with the air (refer to Figure 

5). The fuel injector housing attachment was designed and fabricated from 

Aluminum 6061-T6. Aluminum was selected because of its high thermal 

conductivity. This enables better dissipation of heat from the fuel injector during 

operation.  

NPT Threaded Holes 

Bolts and Nuts  

Stainless Steel Pipes 
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Figure 3.   Top Flange of the Combustion Chamber with Inlets for 
Nitrogen, Pressurized Air, Outlets to Exhaust System and Fuel Injector 

Housing 
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Figure 4.   Fuel Injector   

 

 

Figure 5.   Housing Attachment for Fuel Injector 
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Figure 6.   Cross-sectional View of Flange 

A Swagelock 7 m fuel filter (Figure 7) is also connected before the 

fuel line enters the fuel injector. The function of the fuel filter is to prevent debris 

in the fuel from damaging the fuel injector. 

 
 

 
 

Figure 7.   Fuel Filter (7 m) Installation  

 

 

Fuel Filter   

Fuel Line 

Direction of Fuel Flow 
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The fuel injector is selected based on research that it is able to 

generate droplets of fuel with Sauter mean diameters (D32) between 5 and 15 

m. This is based on the D2 law computation and assumes that a single 

kerosene droplet in a quiescent (non-convective) atmosphere at standard 

condition. The evaporation time8 (tv) for the fuel droplet can be denoted as 

2 2
0 v

8 ln(1 )
d  = d

 

s s

l

B
t

 


    
  
 

 

where density of liquid kerosene (ρl) = 817 kg/m3 

density of vapour kerosene (ρs) = 5.418 kg/m3 

diffusivity for kerosene (αs) = 0.0206 μm2/s 

transfer number for kerosene (B) = 3.4 

 

As stipulated in Figure 8, the square of kerosene droplet diameter 

(d2) is plotted against the evaporation time (tv). The plot also clearly 

demonstrates the effect of pre-heating the fuel before pumping to the fuel 

injector. At 800K, for the same droplet diameter of 40 μm, increasing the 

temperature of fuel reduces the density of the liquid kerosene and reduces the 

evaporation time. 

 

                                            
8 Equation and parameters are referenced from Kenneth K. Kuo, Principles of Combustions, 2005, 

236-257. 
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Figure 8.   Kerosene Droplet Evaporation based on D2 Law 

To ensure homogenous mixing of fuel and air in the combustor 

before ignition can take place, it is crucial to achieve short evaporation time 

(typically < 1 sec). It is noted that the turbulence decay is approximately about 30 

sec under similar testing conditions for the design test rig. It is also important for 

the fuel droplets to be able to evaporate fast so that the laminar condition can still 

be attained at the ignition point. The importance of sizing the appropriate fuel 

injector that is able to generate both uniform and small droplet diameter cannot 

be over emphasized.  
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b. High Speed Si Detector 

During the experiments, high-Speed Si detectors (350-1100 nm, 14 

ns rise time) are mounted in the equally spaced threaded holes to detect the 

passing flame wave and are mounted to the combustor as shown in Figure 9. 

With known separations between each threaded hole, as well as the time taken 

for the flame wave to pass from one detector to another, the speed of the flame 

can then be computed.  

 

 

Figure 9.   Mounting of High Speed Detectors to Combustion Chamber 

 

 

Combustion Chamber  

High Speed Si detector 

NPT Connector (made 
of Brass material) 
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To provide the function of igniting the fuel and air mixture (depicted 

in Figure 10), the two tungsten electrodes extrude themselves into the 

combustion chamber, perpendicular from the threaded holes situated below the 

top flange. A Piezoelectric device (NJ 001A3), shown in Figure 11, is used to 

generate the required voltage across the tungsten electrodes. When the button of 

the device is pushed, a small spring-loaded hammer within the device hits the 

piezoelectric crystal. This generates high voltage across the face of the crystal. 

The voltage is relayed via conducting wire to the tungsten electrodes, creating 

sparks at the tip of the electrodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.   Tungsten Electrodes Mounting on the Combustion Chamber  

 
 
 

NPT Connector (made 
of Teflon material)  

Tungsten
Electrode
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Figure 11.   Piezoelectric Igniter 

The bottom section of the combustion chamber (refer to Figure 12) 

consists of an attachment of a manual hand valve that allows the flushing of the 

combustion chamber via the base of the combustion chamber. Horizontal and 

vertical structural beams (depicted in Figure 13) attached directly to the wall 

support the entire combustion chamber from the ground. For ease of assembly, 

these were made using the Unistrut system. 

 

 

 

Figure 12.   Bottom View of Combustion Chamber 
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Figure 13.   Horizontal and Vertical Structural Beams  
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2. The Exhaust System 

The exhaust system consists of a pneumatic ball valve (Gemini SM50-

A512) at the top of the combustion chamber (Figure 14), as well as a manually 

operated flush valve found at the bottom of the combustion chamber (Figure 15). 

Because of the same considerations for the combustion chamber, the exhaust 

piping is also made from stainless steel. 

 

 

Figure 14.   Exhaust System’s Pneumatic Ball Valve 
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Figure 15.   Exhaust System’s Flush Valve 

To allow for remote operation of test rig, electro-pneumatic controlled ball 

valves are employed throughout the supply system. During the conduct of 

experiments, the hand valve at the bottom of the combustion chamber remains 

open to channel any un-burned fuel or air to flow to the exhaust system. An 

on/off switch connected to power relays controls the air-operated valve at the top 

of the combustor. To purge the combustion chamber and also to maintain a 

balanced pressurized condition within the combustion chamber during the 

experiments, the switch is opened when required.  
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3. The Control System 

The control system enclosure is depicted in Figure 16 and its internal 

components in Figure 17. These are comprised of a pulse generator, a series of 

solid-state relays, a 5VDC power supply and three 24VDC power supplies. The 

front panel of the enclosure has a series of lever switches that provide a 5VDC 

signal to the control logic side of the solid-state relays. These in turn send out the 

24VDC power to the respective electro-pneumatic ball valves. The fuel injector 

lever sends a series of 5VDC pulses with a nominal 1ms duration on a 50% duty 

cycle to the solid-state relay which, in turn, sends similar 24VDC pulses to the 

fuel injector. The reason for this complex control logic is to prevent overheating of 

the fuel injector’s coil. The control system also has a turning knob for setting the 

required frequency of the pulse generator. 

The right-hand lever at the right of the panel serves as the main power 

activation lever. The LED indicates whether the control system is at the off/on 

position. Figure 15 depicts the internal circuitry of the control system. 

 

 

Figure 16.   Control System Enclosure 

Activation Levers  

Frequency Turning Knob  

Main Power Lever 

LED Indicator 
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Figure 17.   Control System Internal Layout  

The pulse generator (refer to Figure 18) is designed and placed in the 

control circuitry to control an output of 5V DC supply to the CRYDOM solid-state 

relay D1D40 (see Figure 19) over a range of duty cycle from 20.5 % to 42.3%. 

The pulse generator consists of a stable controller (FAIRCHILD Semiconductor 

NE555) capable of producing accurate timing pulses with adjustable duty cycle 

and high current drive capability connected to an Inverter (FAIRCHILD 

Semiconductor DM74LS14). The Inverter performs a logic Invert function and 

transforms a change input signal to a fast changing, jitter free output. The 5VDC 

pulsating output signal from the pulse generator enters the input of CRYDOM 

solid-state relay D1D40 and relays a pulsating output of 20VDC (from the 24V 

DC supplies) to the fuel injector based on the selected duty cycle.  

24VDC Power 

Pulse 
Generator 

Solid State Relay 
(D1D40) 

5V DC Power 

Solid State Relay 
(6321)
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Figure 18.   Fuel Injector’s Pulse Generator   

 

Figure 19.   CRYDOM Solid-state Relay D1D40 
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Beside the fuel injector, the control system also centralizes control for the 

electro-pneumatic valves controlling the flow of air, fuel and nitrogen into the 

combustion chamber. The solenoid valves (Swagelock SS-43GS6-33C and SS-

43GS4-31C) are electrically wired and controlled by CRYDOM solid-state relays 

6321 (refer to Figure 20). The three 24VDC power supplies (Carlo Gavazzi 

SPD242401(B) 24V) power these. The 24VDC power supplies (refer to Figure 

21) are connected in parallel to also provide the essential start-up current for the 

fuel injector.  

 

 

Figure 20.   CRYDOM Solid State Relays 6321 
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Figure 21.   Carlo Gavazzi SPD242401(B)24V 

4. The Supply System 

The supply system (Figure 22) has two fuel tanks installed vertically. 

These are 150 mL high-pressure cylinders (Swagelock 316L-50DF4-150). The 

main purpose for having two fuel tanks is to allow a quick changeover from a 

baseline fuel test to a bio-fuel test (refer to Figure 23). By means of the hand 

valves, the cylinders can be isolated and/or removed from the supply system for 

refill or maintenance. Rupture Discs are used for prevention of overpressure 

(refer to Figure 24). The supply system also consists of a pressurized nitrogen 

tank and a compressed air tank (see Figure 25). 
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Figure 22.   The Supply System 

 

 

 

Figure 23.   Fuel Cylinders 
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Figure 24.   Fuel Cylinder Attached to Rupture Discs and Ball Valves 
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Figure 25.   Nitrogen and Compressed Air Tank  

The electro-pneumatic ball valves (Swagelock SS-43GS6-33C and SS-

43GS4-31C) are used to control the flow of air (oxidizer), nitrogen (purging gas) 

and fuel into the combustion chamber (refer to Figure 26). A regulator 

(Matheson-tri-gas 3040-CGA-580) can deliver air pressure from 100 to 2500 psig 

This is also used to control the pressure and flow rate of air mixing with fuel for 

combustion.  
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Figure 26.   Swagelok Electro-pneumatic Ball Valves 

The control system is also comprised of Swagelok ball valves (refer to 

Figure 27). These are used to control the desired flow of air and fuel into the 

combustion chamber. Two regulators (Matheson-tri-gas 3020-CGA-590) with 

delivery pressure 20 to 500 psig regulate both the compressed air and nitrogen 

into the combustion chamber. 
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Figure 27.   Swagelok Steel Ball Valves (Brass and Stainless) 

D. FUNCTIONAL CHECKS AND CALIBRATIONS 

1. Leak Test for Tubing and Piping Systems 

Bubble testing, which does not require high sensitivity, is the methodology 

employed. Liquid leak detector (Swagelok MS-Snoop-8OZ), a liquid soapy 

solution, was applied at the tube/pipe fittings followed by pressurizing these 

systems so that any emergence of bubbles will indicate a leak. The leak tests 

(Figure 28) were conducted initially using shop-air (90 psig). Once these leaks 
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were corrected, a final test took place at high pressure using compressed air (up 

to 1,500 psig for the fuel lines and up to 500 psig for the air and nitrogen purge 

lines). 

 

Figure 28.   Leak Test Conducted on Tube and Pipe Fittings. 

2. Leak Test for Combustion Chamber 

Similar bubble testing methodology was employed for the leak test of the 

combustion chamber. Soaping liquids were applied at all the ports and flanges. 

The chamber was then pressurized. Any leaks found were corrected by either re-

tightening or by adding pipe thread compound rather than utilizing Teflon tape. 

3. Calibration of High Speed Detectors 

An enclosure (Figure 29) is designed and fabricated to house the detector 

at one side and a light source on the opposite side. To measure the signal of the 

detected light source, the detector is connected to an oscilloscope. The detector 

is then calibrated to the required sensitivity to detect flame wave in combustion 

chamber for experimentation. Figure 30 depicts the oscilloscope signal reading 

during the calibration of the detector. 
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Figure 29.   Detector Connected to Test Enclosure for Measurement by 
Oscilloscope  
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Figure 30.   Signal Reading from Oscilloscope during Testing 

4. Spark Test for Igniters 

Inside the combustion chamber (Figure 31), the electrodes are set at the 

required separation and the circuitry is closed to generate the required sparks. 

The spark electrodes were machined from tungsten and mounted on the wall of 

the combustion chamber by means of NPT-threaded mounted nuts. These were 

machined from Teflon material to provide electrical isolation from the combustor 

chamber. The electrodes are wired to a circuit with a piezoelectric igniter (Figure 

32) for release of charges when required to create sparks required for 

combustion in the chamber. Prior to conducting experiments, spark test are 

sufficiently performed by visual inspection.  

 

Step-up in Voltage when LED Light Source is 
Activated 
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Figure 31.   Electrodes Depicting Spark Gap Setting for a Healthy Ignition 
Event. 

 

 

Figure 32.   Piezoelectric Igniter used for the Generation of Sparks  

 

Spark Discharge Generation 

Combustion 
Chamber

Tungsten Electrode 



 42

5. Functional Check for Electro-pneumatic Actuators 

The functionality of these actuators, as shown in Figure 33, open and 

close ball valves in the various gaseous or fuel supply systems. They are tested 

by switching levers at the control system to ensure that the micro-solenoids are 

actually opening and closing. This allows the shop air to engage or disengage 

the actuators, which, in turn, open or close the ball valves. 

 

 

Figure 33.   Activation of Electro-pneumatically controlled Ball Valves 

6. Functional Check for Manual Hand Valves 

To either allow or stop flow within the Swagelok tubing, all the ball valves 

are checked by means of knob turning  
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Actuators

Ball Valves 
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E. INSTRUMENTATION AND MEASUREMENT 

1. Determination of Volumetric and Mass Flow Rate for Fuel 
Injector 

A stainless steel chamber with a manual valve at the bottom is fabricated 

to measure the volumetric flow rate of the fuel injector. The former is attached to 

the top flange of the combustion chamber (refer to Figure 34). Fuel is delivered to 

the fuel injector at a prescribed pressure (from 100 to up to 1,500 psig). The fuel 

injector is activated and the fuel is sprayed and collected in the chamber. Once 

the fuel supply is cut off, the system is allowed to settle for about 1 minute before 

the fuel is collected into a graduated beaker by simply opening the ball valve. 

 

Figure 34.   Measuring (Flow Rate) Device attached to the Combustion 
Chamber for Measurement of Volumetric Flow Rate of Fuel Injector 
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Figure 35.   Graph of Flow Rate for Fuel Injector versus Pressure  

Similar tests are repeated for various pressure settings and a graph 

(Volumetric Flow rate vs. Pressure) is generated for the used fuel injector. For a 

given fuel, with its known density, the mass flow rate for the former can be 

determined from the obtained graph shown in Figure 35. 
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Figure 36.   Input and Output Pulses 

 

A set of pre-determined pulse lengths (varying from 1 to 10 sec) is used to 

estimate average and transient flow rates. The input pulse (5VDC) was set at 

ON-Time of 575 μs and a Cycle Time of 1.32 ms. The output pulse from the 

CRYDOM relay to Injector (24 VDC) was measured to have an ON-Time of 719 

μs and a Cycle Time of 1.29 ms. Refer to Figure 36 for the input and output 

pulses.  

 

Input Pulse 

Output Pulse 
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2. Measurement of Test Conditions 

Pressure, temperature and humidity are recorded for the day when the 

experiment is conducted in the laboratory.  

3. Determination of Flame Speed  

High Speed Detectors (Thorlabs DET36A) are connected to the 

combustion chamber at known separations (10 cm from the centre of hole to the 

other centre of hole). Each detector has a photodiode and internal 12V bias 

battery enclosed in rugged aluminum housing. Housings made of brass material 

are fabricated to mount the detectors vertically on the wall of the combustion 

chamber. The fuel and air mixture upon ignition by the spark discharge will 

initiate combustion and generate a flame wave propagating vertically downwards 

along the inner side of combustion chamber. The detectors will detect these 

flame waves and the detected signals are then relayed to an oscilloscope where 

the time of arrival of the waves is determined. With known distances between 

each peak the flame speed can then be determined. 
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III. RESULTS AND ANALYSIS 

A. DETERMINATION OF LAMINAR FLAME SPEED  

The flame velocity, which is also known as the laminar flame speed, can 

be defined as the velocity at which unburned gases move through the 

combustion wave in the direction normal to the propagating wave surface. In the 

experimental setting, the laminar flame flow field within the combustion chamber 

is measured using the high-speed detectors. The detectors detect these flame 

waves and the detected signals are then relayed to an oscilloscope where the 

time of arrival of the waves was determined. The flame speed can thus be 

determined with the known distances between each peak. 

Prior to the conduct of any flame speed measurement, there is a need to 

establish the flow rate of fuel and air flowing into the combustion chamber. The 

mass flow rate of fuel can be obtained from the experimental measured 

volumetric flow rate and the known density of fuel. Both the volumetric and mass 

flow rate of air can be determined based on the derived stoichiometric equation 

and the known density of air. The time required to fill combustion chamber can 

also be determined from the calculated volume of combustion chamber and the 

measured volumetric flow rate of both fuel and air at various pressure settings.  

B. DETERMINATION OF FUEL TO AIR RATIO  

Kerosene, with an average chemical composition equivalent to C12H26 , is 

used for the determination of mass flow rate of the fuel injector. Under 

stoichiometric conditions, the complete combustion of kerosene with air (oxidizer) 

yields 

C12H26 + 18.5(O2 + 3.76N2)    12CO2 + 13H2O + 69.56N2 

assuming stoichiometric condition occurs at complete combustion; 
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equivalence Ratio (Φ) = 
  a  r

 a  r  ( )

fuel to ir atio

fuel to ir atio stiochiometric
 

From the combustion equation, the fuel to air ratio (stoichiometric) can be 

computed as follows 

S

Fuel

Air
= 

 
 

(12  Mass Weight of Carbon) 26  Mass Weight of Hydrogen

18.5 Mass Weight of Oxygen + 69.56  Mass Weight of Nitrogen

  
 

  

 = 0.06693 

for stoichiometric condition,   = 1; 

Thus, the fuel to air ratio can be computed as 
S

Fuel

Air
 = 0.06693. 

C. DETERMINATION OF MASS FLOW RATE OF FUEL (�FUEL) 

From the relationship of the fuel to air ratio obtained, the mass flow rate of 

air can be computed once the mass flow rate of fuel is determined. To determine 

the mass flow rate of fuel, the volumetric flow rate of fuel can be measured 

experimentally as a function of pressure. The mass flow rate can then be 

obtained by multiplying the density of fuel to the measured volumetric flow rate of 

fuel. 

The volumetric flow rates of fuel were measured experimentally as a 

function of pressure. Two sets of data were collected at each pressure (for 

pressure at 50, 75, 100, 200 and 300 psi). The fuel injector was turned on for 5 

sec and 10 sec, respectively, and the amount of fuel dispensed was collected 

and measured. The volumetric flow rate of fuel is obtained by dividing the 

measured volume of fuel over the time duration at each respective pressure. A 

graph of volumetric flow rate of fuel as a function of pressure is plotted in Figure 

37. 
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Figure 37.   Volumetric Flow Rate of Fuel vs. Pressure  

The mass flow rate of fuel can, thus, be obtained by multiplying the known 

density of fuel to the measured volumetric flow rate of fuel. Refer to Figure 38 for 

the graph of mass flow rate of fuel as a function of pressure. 
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Figure 38.   Mass Flow Rate of Fuel vs. Pressure  

D. DETERMINATION OF MASS FLOW RATE OF AIR (�AIR) 

equivalence ratio (Φ) = 
  a  r

 a  r  ( )

fuel to ir atio

fuel to ir atio stiochiometric
 

re-arranging the equation in terms of mass flow rate of air (ṁair) yields 

.
.

1 
S

fuel
air fuel

air

m
m


 

 

for stoichiometric condition,   = 1 

fuel to air ratio can be computed as 
S

fuel

air
 = 0.06693. 
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The mass flow rate of air can thus be calculated for the corresponding 

mass flow rate of fuel at various pressure settings. The graph of mass flow rate 

of air as a function of upstream pressure for d = 0.137 in choke is depicted in 

Figure 39. 
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Figure 39.   Mass Flow Rate of Air  vs. Pressure  

Figure 40 depicts the relationship of mass flow rate of air (ṁair) vs. 

equivalence ratio (Φ) at the pressure of 100, 200 and 300 psi. 
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Figure 40.   Mass Flow Rate of Air vs. Equivalence Ratio for various Fuel 
Pressure Settings.  

Once the required mass flow rate of air is determined, suitable choked 

orifice can then be selected. This controls the appropriate flow rate of air into the 

combustion chamber required to conduct the flame speed test at various 

pressure setting. 

E. CALCULATION OF TIMING REQUIRED TO FILL COMBUSTION 
CHAMBER 

Based on the dimension of the test rig, the volume of the combustion 

chamber can be computed as follows 

2 d
vol = 

4
l


  

where diameter of chamber (d) = 0.075 m and length of chamber (l) = 1.83m.  

 

 

300 psi 

200 psi 

100 psi 

75 psi 

50 psi 
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Thus, the volume of combustion chamber is calculated as 0.0081 m3. The 

required time for air and fuel to fill the combustion chamber is governed by the 

equation as follows 

of combustion chamber
 required = 

flow rate 

vol
Time

volumetric
 

Based on the density of fuel as 810 kg/m3 and the density of air as 1.204 

kg/m3, the timing for fuel and air to fill the combustion chamber is tabulated in 

Table 2.  

F. MEASUREMENT OF LAMINAR FLAME SPEED  

The desired equivalence ratio (Φ) is attained by the appropriate control of 

mass flow rate of fuel into the injector and mass flow rate of air into the 

combustion chamber. Upon spark ignition, flame waves propagate down the 

combustion chamber. The high-speed detectors detect these passing flame 

waves and relay the signals to an oscilloscope where the time of arrival of the 

waves is determined. The flame speed can thus be determined with the known 

distances between each peak.  

= L

y
S

t


  

where SL  = laminar flame speed 

 ∆y = distance between the detectors 

 Δt = time difference 

G. IGNITION AND FUELING COMPLICATIONS  

During dry air testing, the piezoelectric igniter employed to generate the 

required spark arc for combustion was observed to be performing well. There 

was constant spark arc generated for every depression on the spring activator of 

the igniter. However, during the actual experimentation, when fuel was injected 
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into the Combustion Chamber, the igniter was not working up to expectation. 

There were times where no spark arc was produced.  

The selection criterion for the fuel injector was primarily based on its 

dispersion fuel droplet size. It was only realized at the testing stage that the 

injector has unexpectly large flow rate, which induced large amount of 

impingment onto the walls of the Combustion Chamber. This may have skewed 

the local fuel-air ratio to leaner values than anticipated on the center axis of the 

Chamber and much richer fuel-air ratios near the wall. A more detailed feasibility 

study on the compatibility between the fuel flow rate and the current test rig may 

be required.   
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IV. CONCLUSIONS  

Bio-diesel is definitely a promising alternative to petroleum-based diesel 

fuels. This is primarily because of its ability to reduce unwanted emissions in 

combustion engines. The ease of production of bio-diesel through growth of 

plants and algae as well as livestock has also made it a great potential to 

supplant a fraction of petroleum-based fuels.  

The experiments conducted served as an exciting step towards the 

original objectives and goals. Because of many obstacles in the experiments, 

much important knowledge was gained which lays the foundation for future 

research. 

A laboratory-based test rig was designed and fabricated with the intention 

to directly measure the laminar flame speed of bio-diesel. For the initial phase of 

the design, the mass flow rate of fuel (into the fuel injector) and the mass flow 

rate of air (into the combustion chamber) required sizing the choked orifice. 

Kerosene was utilized as the testing fuel. Controlling the fuel flow rate into the 

injector and the air flow rate into the combustion chamber was recognised as a 

crucial parameter. This is because it effects the accuracy and the conditions, i.e., 

fuel-lean or fuel-rich. This is where the laminar flame data is obtained.  

Critical ignition and fueling issues, however, were uncovered during 

experimentation. The current ignition system employing the piezoelectric igniter 

to generate the required spark arc for combustion was found to be unreliable. 

There were times where no spark arc was produced. For future research, it is 

highly recommended to, rather than using the current piezoelectric igniter, use a 

capacitive discharge system. This would generate a more reliable and stronger 

spark arc, which is mandatory for combustion.  
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In addition, the study’s experiments strongly indicated that, prior to future 

research, it would be necessary to re-evaluate the compatibility between the fuel 

flow rate and the current test rig. This will require a detailed feasibility study on 

the current fuel injector. 

After analyzing the experiments, along with the important obstacles and 

knowledge gained from them, the next section provides suggested improvement 

pathways to the current design. This will pave the way towards successful 

solutions, which means obtaining the original experimental objectives and goals. 
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V. RECOMMENDATIONS 

A. INCLUSION OF FUEL AND AIR PRE-HEAT SYSTEM 

The inclusion of a pre-heat system for fuel and air prior injecting and 

mixing in the combustion chamber would alleviate the need for small droplet size 

diameters as per D2 law, described in the earlier section. This will thus allow the 

usage of wider range of fuel injectors with larger D32s but with a more appropriate 

flow rate. 

 B. IMPLEMENTATION OF LABVIEW  

For better integration, accessibility and control of both the instrumentation 

and measurement hardware, it is recommended to include a control-

programming environment such as LabVIEW to integrate measurement, test, and 

control systems of the test rig. LabVIEW offers integration with hardware devices 

and provides a good spread of already built-in libraries for advanced analysis and 

data visualization. 

C. PROVISION FOR OPTICAL ACCESS  

For future experiment, it will be good if the research can be expanded to 

the study of the formation of flame. An optical moderate-pressure chamber is 

thus desirable. The upgrade will serve as a tool for on-site observation of 

dynamic changes of flame formation within the combustion chamber. The current 

test rig caters the possibility for such modular modifications to be implemented 

for future improvement. Flame thickness can then be observed and computed 

and the relationship between flame thickness and equivalence ratio can be 

established. Reaction zone area of the flame can also be observed and high-

speed video can be used as another possible mean to determine flame speed.  
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D. SPECTROSCOPIC MEASUREMENT 

Spectroscopy instruments may also be included in future testing to 

measure the chemical composition and physical properties of the bio-fuel. During 

the design phase, the combustion chamber has already factor in such 

requirement to allow for future installation if required.  
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APPENDIX 

EXPERIMENTAL PROCEDURES 
 

Pre-experimental checks are required prior the conduct of actual 

experiment. The procedures for the pre-experimental functional checks are 

depicted as follows:  

 

1. Power-up the control system (by pulling up the switch) to ensure its 

functionality prior to performing checks on other sub-components. The red bulb 

at the top right corner of the control panel should be lilted to indicate that the 

control system is functioning. 

 

2. Remove the top modular of the combustion chamber to conduct 

functional check for Injector and Spark Plugs.  

 

3. Conduct functionality check for the injector at the top-flange by 

activation of the lever at the control panel to close the circuitry and observe for 

pressure blowout from the injector. The injector should generate a “ooze” sound, 

discharging small amount of fuel. Place a container underneath the injector to 

trap these residues during the conduct of functional check. Igniter nozzle tip 

inspections will be performed at the end of each test phase to ensure no coking 

occurred during the test burns.  

 

4. Ensure that the tungsten tips of the spark plugs are placed in 

accordance to the required separations. Turn on the lever at the control panel to 

close the circuitry and observe for spark generation. Adjust the separation of the 

tungsten tips by clockwise or anti clockwise turning to obtain the desired spark 

generation. Once the check for the spark generation is completed, the top 
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modular is mounted back to the main combustion chamber and sealed with the 

top flange by means of sealing gasket. For every 20 firings, the tungsten tips’ 

separation must be checked and adjusted if required to ensure sufficient spark 

generation during conduct of subsequent flame speed experiments.  

 

5. Conduct check on the piezoelectric igniter by depressing the knob 

actuator. Ensure that sparks are generated between the tungsten sparks plugs 

for every depression.  

 

6. Turn on the valve for compressed air to allow the electro-pneumatic 

actuators to be pressurized.  

 

7. Flip on/off the individual switches at the control panel and observe 

the opening/closing of the actuators.  

 

8. Ensure all manual valves can operate in both open and close 

positions. Place them all in close positions prior the commencement of 

experiment. 

 

9. Ensure that the high-speed detectors are in their correct positions 

on the combustion chamber and that they are properly connected to the 

oscilloscope.  

 

10. Ensure that the wall exhaust fan is in working condition. 

 

11. Complete all pre-experimental functional checks for injector, spark 

plugs, solenoid valves, manual valves, high-speed detectors and exhaust fan 

prior mounting of the alcohol and fuel cylinders to the supply system.  
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12. Fill fuel into the respective cylinders and connect them to the supply 

system. Check for leakages and ensure that the top and bottom connectors of 

the cylinders are tightly sealed by Teflon tape.  

 

13. Perform diligent check at the connectors near the mounting area of 

the alcohol and fuel cylinders and ensure that all connectors are properly sealed 

(by pipe thread tape).  
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The following schematic diagram of the test system is stipulated for 

reference in the subsequent elaboration of the experimental procedures.  
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Figure 41.   Schematic Diagram of the Test Rig 
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Reference Figure 41 for the following: 

PG1 regulates pressure into the combustion chamber and PG2 

regulates pressure into both combustion chamber and supply system. The series 

of manual valves (MV1 to MV7) controls the fuel flow from fuel cylinders (C1 and 

C2). PG3 regulates the pressure of nitrogen required for purging of the 

combustion chamber. The solenoid valves, SV1 and SV2, control the flow 

gateway for air (oxidizers) and nitrogen (purging gas) into the combustion 

chamber, respectively. SV3 controls the fuel supply into the combustion 

chamber. Both SV4 and MV8 control the release of pressure in the combustion 

chamber to the exhaust wall fan.     

 

The experimental procedures for the conduct of the Fuel Injector 

Flow Rate Characterization, Flame Speed Determination, Purging and the 

Shutdown are stipulated as follows:  

 

1. Procedures for fuel injector flow rate characterization: 
 

a. Turn on wall fan (to Speed 1) for ventilation prior the conduct 

of experiment. 

  

b. Verify all Swagelok and NPT connections are properly 

sealed. 

 

c. Connect Channel 2 of the oscilloscope to the input of D1D40 

CRYDOM Relay. Connect Channel 1 of the oscilloscope to a 

50 ohms terminal to the injector output terminal located 

behind the control box. 

 

d. Fill the fuel cylinder with the desired fuel for testing. 
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e. Pressurize system to initial set pressure (i.e., 100 to 500 

psig). 

 

i. Verify only the fuel tank in use is pressurized (i.e., open 

only the appropriate manual ball valves and ensure all 

the remaining manual ball valves are at closed position). 

 

ii. Ensure all levers at the control box are at closed position 

prior to powering up the control box. 

 

iii. Ensure that the shop sir valve is turn on. 

 

iv. Open SV3 by flipping up Lever 3 at the control box. This 

will enable fuel flow from fuel cylinder to injector.  

 

v. Ensure nitrogen purge regulator is set to zero at PG3. 

 

vi. Open the nitrogen regulator hand valve (i.e., with one full 

turn counter-clockwise) at PG2. 

 

vii. Open the main valve of the nitrogen tank and verify that 

the supply pressure is sufficient. 

 

viii. Set test rig to desired pressure level by turning the 

nitrogen regulator hand valve at PG2. 

 

ix. Perform visual inspection to test rig to ensure no leaks.  

 

f. Perform fuel calibration at various set pressure. (i.e., 100 to 

500 psig). 
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i. Flip up Lever 8 at the control box to activate the fuel 

injector and collect the dispensed fuel in the measuring 

device. Use a stopwatch to measure the time duration for 

fuel dispersal.  

 

ii. Measure the collected fuel in graduated cylinder. 

 

iii. Divide the volume of fuel collected by the time taken to 

obtain the volumetric flow rate. 

 

iv. Multiple the volumetric flow rate to obtain the desired 

mass flow rate for fuel. 

 

2. Procedures for flame speed determination:  
 

a. Turn on wall fan (to Speed 1) for ventilation prior to 

conducting the experiment. 

  

b. Verify all Swagelok and NPT connections are properly 

sealed. 

 

c. Connect Channel 1 and 2 of the oscilloscope to the output of 

High Speed Detectors. Ensure connectivity of the High 

Speed Detectors to the oscilloscope.  

 

d. Fill the fuel cylinder with the desired fuel for testing. 

 

e. Pressurized system to initial set pressure (i.e., 100 to 500 

psig). 
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i. Verify only the fuel tank in use is pressurized (i.e., open 

only the appropriate manual ball valves and ensure all 

the remaining manual ball valves are at closed position). 

 

ii. Ensure all levers at the control box are at closed position 

prior to powering up the control box. 

 

iii. Ensure that the shop sir valve is turn on. 

 

iv. Open SV3 by turning up Lever 3 at the control box. This 

will enable fuel flow from fuel cylinder to injector. 

 

v. Ensure nitrogen purge regulator is set to zero at PG3. 

 

vi. Open the nitrogen regulator hand valve (i.e., with one full 

turn counter-clockwise) at PG2. 

 

vii. Open the main valve of the nitrogen tank and verify that 

the supply pressure is sufficient. 

 

viii. Set test rig to desired pressure level by turning the 

nitrogen regulator hand valve at PG2. 

 

ix. Perform visual inspection to test rig to ensure no leaks.  

 

f. Perform flame speed test at various set pressure.  

 

i. Flip up Lever 8 at the control box to activate the fuel 

injector. Use a stopwatch to measure the time duration 

for fuel dispersal.  
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ii. Flip down Lever 8 to close the fuel injector. Allow a 

residue time of one minute before activating the spark 

electrodes.  

 

iii. Depress the button of the piezoelectric igniter to activate 

spark generation in the combustion chamber. 

 

iv. Observe the signals (at the oscilloscope) captured by the 

high-speed detectors. Record the delta time between 

Channel 1 and 2. 

 

v. Divide the known separation distance between the high-

speed detectors with the delta time to obtain the speed of 

flame. 

 

3. Procedures for system purging: 
 

a. Decrease the pressure from the nitrogen tank (PG2). 

 

b. Turn on SV4. 

 

c. Turn on SV2. 

 

d. Turn on PG3 to slowly release pressure into the combustion 

chamber. 

 

4. Procedures for system shut down: 
 

a. Decrease the pressure from the nitrogen tank (PG2) and 

close the valve PG2. 
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b. Turn on SV2. 

 

c. Increase the pressure from PG3 slowly to release pressure 

into the supply system. 

 

d. Close PG3 after pressure from supply system has been 

released. 

 

e. Close SV2. 

 

f. Ensure all MVs are at closed position. 

 

g. Turn on SV4 to release pressure in the combustion 

chamber. 

 

h. Close SV4. 

 

i. Close SV3 to cut fuel supply into combustion chamber. 

 

j. Close SV1 to cut air supply into combustion chamber. 

 

k. Turn off power for control box. 

 

l. Maintain operation of wall exhaust fan for another 5 minutes 

to allow ventilation of remaining fuel fumes in the room 

before shutting it down.  
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